Desogestrel enhances ventilation in ondine patients: Animal data involving serotonergic systems

Fanny Joubert a, Anne-Sophie Perrin-Terrina, b, Emilienne Verkaerena, Philippe Cardota, Marie-Noëlle Fiamma a, Alain Frugièrea, Isabelle Rivals a, c, Thomas Similowska, a, d, e, 1, Christian Strausa, e, f, 1, Laurence Bodineau a, *

a Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S5158 Neurophysiologie respiratoire expérimentale et clinique, F-75013, Paris, France
b University Paris 13, Sorbonne Paris Cité, Laboratory “Hypoxia & Lung” EA2363, 74 rue Marcel Cachin, 93017, Bobigny, France
更多信息...

Abstract

Congenital central hypoventilation syndrome (CCHS) is a neurorespiratory disease characterized by life-threatening sleep-related hypoventilation involving an alteration of CO2/H+ chemosensitivity. Incidental findings have suggested that desogestrel may allow recovery of the ventilatory response to CO2. The effects of desogestrel on resting ventilation have not been reported. This study was designed to test the hypothesis that desogestrel strengthens baseline ventilation by analyzing the ventilation of CCHS patients. Rodent models were used in order to determine the mechanisms involved. Ventilation in CCHS patients was measured with a pneumotachometer. In mice, ventilatory neural activity was recorded from ex vivo medullary-spinal cord preparations, ventilation was measured by plethysmography and c-fos expression was studied in medullary respiratory nuclei. Desogestrel increased baseline respiratory frequency of CCHS patients leading to a decrease in their PETCO2. In medullary spinal-cord preparations or in vivo mice, the metabolite of desogestrel, etonogestrel, induced an increase in respiratory frequency that necessitated the functioning of serotoninergic systems, and modulated GABAA and NMDA ventilatory regulations. c-FOS analysis showed the involvement of medullary respiratory groups of cell including serotoninergic neurons of the raphe pallidus and raphe obscurus nuclei that seem to play a key role. Thus, desogestrel may improve resting ventilation in CCHS patients by a stimulant effect on baseline respiratory frequency. Our data open up clinical perspectives based on the combination of this progestin with serotoninergic drugs to enhance ventilation in CCHS patients.

1. Introduction

Breathing depends on a rhythmic command originating in a brainstem neuronal network that is finely tuned to variations of O2, CO2 and pH (Feldman et al., 2013). Significant disruptions in the neuronal respiratory network or its regulatory processes are associated with various pathological conditions including central hypoventilation syndromes (Carroll et al., 2010; Ramanantsoa and Gallego, 2013). These disorders can be life-threatening and may require mechanical ventilatory assistance. They expose patients to neural damage (Harper et al., 2014) and impair their quality of life. No pharmacological treatment is available for central
hypoventilation syndromes.

Congenital central hypoventilation syndrome (CCHS) is a neurorespiratory disease characterized by sleep-related hypoventilation and the absence or reduction in CO2/H+ chemosensitivity (Amiel et al., 2003; Weese-Mayer et al., 2010) due to mutations of the PHOX2B gene (Amiel et al., 2003). Recovery of CO2/H+ chemosensitivity was incidentally observed in two adult CCHS women using desogestrel (DSG) for contraceptive purposes (Straus et al., 2010). In view of the known effects of progesterone on central ventilatory drive (CVD) and despite the absence of known effects of progesterone in CCHS (Behan et al., 2003; Sritippayawan et al., 2002), it was hypothesized that DSG was responsible for restoring the ventilatory response to CO2 (Straus et al., 2010). Deliberately administering DSG to another patient did not induce any recovery of CO2/H+ chemosensitivity (Li et al., 2013). These contradictory findings may be due to the complex nature of the actions of progestins on breathing control, idiosyncrasies or both. The action of DSG (Straus et al., 2010), or rather its metabolite 3-ketodesogestrel (etongestrel; ETO), a synthetic progestin derived from testosterone and belonging to the gonane family (Schumacher et al., 2007; Sitruk-Ware, 2008), may involve multiple pathways, as animal studies have revealed that the ventilatory action of progestins (including DSG) is dependent on hypothalamic mechanisms (Bayliss et al., 1990; Pascual et al., 2002) related to CVD and serotoninergic agonists or antagonists and c-FOS analysis were used to identify the mechanisms involved. Some of the results of these studies have been previously reported in the form of abstracts (Joubert et al., 2014; Perrin-Terrin et al., 2015).

2. Materials and methods

2.1. Humans

The study in humans was carried out on the ventilatory signal recorded by Straus et al (Straus et al., 2010) at the time of the first description of recovery of chemosensitivity in two CCHS patients taking DSG 75 µg daily for contraception. The previous publication (Straus et al., 2010) reported the ventilatory response of patients to hypercapnia. In the present study, we analyzed the baseline ventilation recorded before exposure to hypercapnia.

The two patients were regularly assessed in the adult branch of the French reference Center for CCHS (Straus et al., 2010; Trang et al., 2005), according to current guidelines (Weese-Mayer et al., 2010). Both patients gave their written consent to scientific publication of the results obtained from their data (Straus et al., 2010).

Briefly, the first patient was a 19-year-old woman, who harbored a 5-alanine expansion mutation of the PHOX2B gene. At the time of the study, she was dependent on mechanical ventilation only during sleep and presented normal ventilation during wakefulness at rest.

The second patient was a 30-year-old woman, who harbored a 6-alanine expansion mutation of the PHOX2B gene. At the time of the study, she was still tracheotomized and dependent on mechanical ventilation, but only during sleep. However, hypoventilation was present during wakefulness at rest (P0.2 ≈ 75 mmHg; P0.2 ≈ 55 mmHg).

The two patients breathed through a pneumotachometer and their tidal volume (VT), respiratory frequency (fR), minute ventilation (V̇e), and end-tidal carbon dioxide partial pressure (PETCO2) were recorded (Hyp’Air Compact+, Medisoft, Sorinnes-Dinant, Belgium) at different times during 5 respiratory cycles, i.e. before, during and after DSG exposure.

2.2. Animals

Experiments were performed on both male and female newborn (0–3 days old; 2.1 ± 0.1 g) wild-type mice (Mus musculus, OF1 strain; Charles River laboratories, L’Arbresle, France (http://www.criver.com/products-services/basic-research/find-a-model/offmous)). All experiments were carried out in accordance with Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 and French law (2013/118). All efforts were made to minimize the number of animals used and their suffering. Animals were kept on a 12 h light-dark cycle with free access to food and water.

2.2.1. Pharmacological agents

Drugs obtained from Sigma-Aldrich (Saint-Quentin Fallavier, France), were prepared in either saline or dimethylsulfoxide (DMSO) and were dissolved in artificial cerebrospinal fluid (aCSF) for ex vivo preparations and in oil for in vivo experiments (García-Pelaez et al., 2007; Ren and Greer, 2006). Bicuculline, MK-801, methysergide, N-methyl-D-aspartate (NMDA), muscimol and serotonin (5-hydroxytryptamine, 5-HT) were prepared in saline. ETO, like other steroids, was dissolved in DMSO or oil.

2.2.2. Whole body plethysmography

Animals were placed in an experimental chamber (20 ml) in which they could freely move. The chamber was maintained at 33 °C, the thermoneutral zone (Gordon, 1993), with an external heat source. During the experimental period, the chamber was continuously flushed at 0.6 L min⁻¹ for the continuous delivery of air and removal of expired CO2. Using an adaptation of the barometric method previously described (Bartlett and Tenney, 1970), the pressure change induced by the respiratory flow was recorded with a differential pressure transducer (Valdyme MP 45, Northridge, CA, USA). The pressure signal was digitized through a LabChart data analysis system (ADInstruments, Castle Hill, Australia). Measurements were made on 15 s, at intervals of 5 min.

2.2.3. Medullary-spinal cord preparations

Newborn mice were placed under deep cold anesthesia and medullary-spinal cord preparations were dissected out as previously described. The rostral section was made at the level of the eighth cranial nerve exit point. The caudal section was made between the seventh and eighth cervical spinal roots. Preparations were placed in a recording chamber with the ventral surface facing upward. They were continuously superfused at a rate of 10 ml/min, at 26 °C, with dioxygenated aCSF (129.0 mM NaCl, 3.35 mM KCl, 1.26 mM CaCl₂, 2H₂O, 1.15 mM MgCl₂ · 6H₂O, 0.58 mM NaH₂PO₄ · H₂O, 21.0 mM NaHCO₃, 30.0 mM D-glucose) saturated with O2 and adjusted to pH 7.4 by bubbling with 95% O₂ and 5% CO₂ (normal pH-
CVD was analyzed by measuring the electrical activity of a fourth cervical ventral nerve root (C4) recorded using a suction electrode, filtered (10–3000 Hz), amplified (>5000), integrated (time constant 100 ms) and digitized by a Spike 2 data analysis system (CED, Cambridge, UK), at a sampling frequency of 2500 Hz. As previously reported, f_b was commonly defined as the burst frequency recorded from C4 over 1 min. The integrated C4 burst activity (IntC4) was also used as an index of inspiratory activity (Voituron et al., 2006).

2.2.4. Pharmacological applications

2.2.4.1. Analysis of the effect of ETO on in vivo newborn mice. Newborn mice received per os either ETO (10⁻³ mg/kg) dissolved in oil, or oil alone.

2.2.4.2. Analysis of the effect of ETO on ex vivo preparations. After completion of the surgical procedure, ex vivo preparations were maintained in normal pH-aCSF superfusion for 30 min to stabilize CVD; baseline values were defined as the mean value over the last 5 min of this period. The effect of ETO was determined under normal pH at 0.05, 0.5, 1 and 2 µM (final concentration of DMSO used to dissolve ETO 0.01%). After stabilization, ETO or DMSO alone was added to normal pH-aCSF for 30 min, f_b and IntC4 were then averaged over successive 5-min intervals and expressed as a percentage of baseline values. Preparations were then either returned to normal pH-aCSF superfusion for 30 min or fixed by incubation in 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS; pH 7.4).

2.2.4.3. Analysis of interactions of ETO with GABA_A receptors on ex vivo preparations. In a first step, we investigated possible interactions between GABA_A receptors and ETO by evaluating changes in the effect of ETO under conditions of GABA_A receptor blockade. After stabilization, preparations were successively superfused with normal pH-aCSF containing bicuculline for 10 min followed by normal pH-aCSF containing bicuculline and supplemented with ETO or DMSO for 30 min; f_b, the only respiratory variable affected by ETO, was expressed as a percentage of bicuculline values (values obtained during the last 5 min of bicuculline exposure). Preparations were subsequently returned to normal pH-aCSF for 10 min. In a second set of experiments, we tried to characterize the action of ETO on the GABA_A receptor effects on f_b i.e. facilitation or moderation. We compared the effect of muscimol on f_b in both the presence and the absence of ETO. According to data of the literature, the EC₅₀ of muscimol was first determined by examining its effect on f_b at several concentrations (0.05, 0.10, 0.15, 0.20 and 0.25 µM) for 4 min. Preparations were exposed to normal pH-aCSF containing either ETO or DMSO and then to normal pH-aCSF containing ETO or DMSO with muscimol at EC₅₀ for 4 min; f_b was expressed as a percentage of pre-muscimol values (values obtained during the 5 min preceding muscimol exposure). Preparations were subsequently returned to normal pH-aCSF for 10 min.

2.2.4.4. Analysis of interactions of ETO with NMDA receptors on ex vivo preparations. According to data of the literature, the EC₅₀ of NMDA on f_b was determined by examining its effect at several concentrations (8.0, 8.5, 9.0, 9.5 and 10 µM) for 10 min. First, we evaluated changes in the effect of ETO under conditions of NMDA receptor blockade. We determined the lowest concentration of MK-801 that totally antagonized the NMDA effect on f_b. Preparations were successively exposed to several concentrations of MK-801 (2.5, 5 and 10 µM) for 10 min followed by NMDA at EC₅₀ for 10 min; the lowest concentration of MK-801 that totally antagonized NMDA receptors was found to be 2.5 µM. Then, after a stabilization period, preparations were superfused with normal pH-aCSF containing MK-801 (2.5 µM) for 10 min followed by normal pH-aCSF containing MK-801 supplemented with ETO for 30 min; f_b was expressed as a percentage of MK-801 values. Preparations were subsequently returned to normal pH-aCSF for 10 min.

Second, to investigate possible modulation of the effects of NMDA receptors on f_b by ETO, we compared the effect of NMDA in both the presence and the absence of ETO. Preparations were exposed to NMDA at EC₅₀ for 10 min after 30 min of exposure to normal pH-aCSF containing either ETO or DMSO; f_b was expressed as a percentage of pre-NMDA values (values obtained during the 5 min preceding NMDA exposure). Preparations were subsequently returned to normal pH-aCSF for 10 min.

2.2.4.5. Analysis of interactions of ETO with serotonergic systems on ex vivo preparations. To study the implication of serotonergic systems on modulation of central respiratory drive by ETO, we evaluated the effect of ETO in the presence of blockade of 5-HT₂ receptors, which are the main 5-HT receptors involved in respiratory modulation (Hilaire and Duron, 1999).

We determined the effect of 5-HT (25 µM) for 10 min on f_b. We then determined the lowest concentration of methysergide that totally antagonized the respiratory effects of 5-HT. Preparations were successively exposed to several concentrations (1, 2.5, 5 and 10 µM) of methysergide for 10 min followed by 5-HT (25 µM) for 10 min; the lowest concentration of methysergide that totally antagonized the effects of 5-HT on f_b was determined to be 5 µM.

After a stabilization period, preparations were successively superfused with normal pH-aCSF containing methysergide (5 µM) followed by a normal pH-aCSF containing methysergide supplemented with ETO for 30 min; f_b was expressed as a percentage of baseline values minus the effect of methysergide alone.

2.2.5. Immunohistochemistry

To identify ETO-induced changes in cell activity, immunohistochemical analysis for c-FOS was carried out in ex vivo medullary-spinal cord preparations used to either ETO or DMSO for 30 min (n = 32). At the end, preparations were fixed in 4% paraformaldehyde in 0.1 M PBS (pH 7.4) for 48 h at 4 °C. Preparations were then cryoprotected for 48 h in 30% sucrose in 0.1 M PBS and stored at −20 °C for subsequent use. Standard immunohistochemical procedures were used to locate c-FOS on 40 µm-thick coronal free-floating sections obtained using a cryostat (Leica CM 1510S) (Voituron et al., 2011). Briefly, sections were incubated with a rabbit polyclonal antibody against c-FOS (sc-52; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA; 1:2000) in 1% BSA for 48 h at 4 °C. They were then incubated with a biotinylated goat anti-rabbit immunoglobulin (Vector Laboratories, Burlington, Canada; 1:500) and then with a biotinylated goat anti-rabbit immunoglobulin (Vector Laboratories, Burlington, Canada; 1:500) and then with an avidin-biotin-peroxidase complex (ABC; Novostain Super ABC kit, Novocastra Laboratories, Newcastle, UK; 1:250). Peroxidase activity was detected with 0.02% 3,3'-diaminobenzidine tetrahydrochloride and 0.01% H₂O₂ in 0.05 M Tris-HCl buffer (pH 7.6).

To characterize the cells displaying changes in activity revealed by c-FOS-analysis, dual detections were performed i.e. c-FOS and tyrosine hydroxylase (TH) and c-FOS and 5-HT. Sections were first incubated with a rabbit polyclonal antibody against c-FOS (sc-52 Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA; 1:2000; 48 h; 4 °C), then with a biotinylated goat anti-rabbit immunoglobulin (Vector Laboratories, Burlington, Canada; 1:500; 2 h) and ABC (1:250). Peroxidase activity was detected with 0.02% 3,3'-diaminobenzidine tetrahydrochloride, 0.04% nickel ammonium sulfamate and 0.01% hydrogen peroxide in 0.05 M Tris-HCl buffer (pH 7.6). Second, sections were incubated with either a mouse polyclonal
antibody against TH (MAB318, Millipore, 1:4000) or a rabbit polyclonal antibody against 5-HT (S5545, Sigma-Aldrich, Saint-Quentin Fallavier, France; 1:500) for 48 h at 4 °C. Sections were subsequently incubated for 2 h with biotinylated horse anti-mouse (Vector Laboratories, Burlington, Canada; 1:500) or goat anti-rabbit (Vector Laboratories, Burlington, Canada; 1:500), respectively, and then with ABC (1:250). Peroxidase activity was detected with 0.02% 3,3'-diaminobenzidine tetrahydrochloride and 0.01% hydrogen peroxide in 0.05 M Tris buffer (pH 7.6).

In all cases, control sections were processed in parallel, but with the omission of primary or secondary antibodies. No labeling was observed on control sections.

Sections were mounted in sequential caudo-rostral order on silanized slides, air-dried and coverslipped with Entellan® (VWR International S.A.S).

Sections were examined under a light microscope (Leica DM 2000; Leica Microsystems, Heidelberg, Germany). The distribution of c-FOS, c-FOS/TH and c-FOS/5-HT immunolabeled cells was plotted onto drawings with the aid of a drawing tube attached to the microscope (magnification × 10). c-FOS and double-labeled cells were visually counted under the microscope at high magnification (×400) in medullary structures involved in central respiratory drive using standard landmarks (Paxinos et al., 2007; Paxinos and Franklin, 2001). Immunolabeled cells were photographed with a digital camera (Leica DFC450C, Leica Microsystems, Heidelberg, Germany). c-FOS-positive cells were analyzed in the ventrolateral medullary reticular nucleus (VLM), nucleus tractus solitarius (NTS), medullary raphe nuclei (raphe magnus (RMg), obscurus (ROb) and pallidus (RPa)), retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), parapyramidal area (PP), hypoglossal and facial nucleus. The VLM is a neuronal column ventral to the nucleus ambiguus including the pre-Botzinger complex (preBotC) and A1C1 group of neurons and extending from the pyramidal decussation to the caudal edge of the facial nucleus. Using standard landmarks (Paxinos et al., 2007; Paxinos and Franklin, 2001), a distinction was made between the caudal part of the RPa and ROb (from the pyramidal decussation to the rostral edge of the inferior olives) and their rostral part (from the rostral edge of the inferior olives to the rostral edge of the facial nucleus). Several subdivisions of the NTS were analyzed, i.e., the commissural, median and ventrolateral and the commissural and median subdivisions were grouped in a single entity referred to as the commissural/median NTS (c/mNTS).

2.2.6. Statistics

Data were expressed as mean (±SEM) and analyzed with GraphPad (GraphPad Prism5 San Diego California USA) or Matlab (MATLAB Version: 8.5.0.197613 (R2015a)).

For human data, the significance of the effects on the responses ($f_\text{E}, V_T, V_E, \text{PETCO}_2$) of the fixed effect time factor (before, during or after DSG treatment) and of the random effect patient factor (two modalities, first or second patient) were tested using a hierarchical two-way ANOVA, homoscedasticity being assessed by Bartlett’s test, and normality by Lilliefors’ variant of Kolmogorov-Smirnov’s test. The p-values of the two-by-two comparisons between different times for each patient were adjusted for multiple testing using Sidak’s correction. For animal data, a single dose of each tested drug was applied for each animal or preparation. Depending on normality and homoscedasticity, two-way ANOVA followed by Bonferroni’s post hoc least squares differences (PLSD) correction or

Fig. 1. DSG increases baseline f_E in two CCHS patients. (A–D) Boxplot showing the median breath-by-breath f_E (A and B) and median breath-by-breath PETCO$_2$ (C and D) in two CCHS patients. † indicates a significant difference between before or after DSG treatment and during DSG exposure. ANOVA 1 way – Bonferroni post test. †† $p < 0.01$, ††† $p < 0.001$; desogestrel (DSG).
Kraskal-Wallis test followed by Dunn’s PLSD were used. Differences were considered significant at p < 0.05.

3. Results

3.1. Effect of DSG on baseline ventilatory variables of two CCHS patients

Before DSG exposure, the first CCHS patient displayed a V_E of 8.33 ± 0.36 L/min resulting from a f_R of 13.06 ± 0.54/min and a V_T of 0.64 ± 0.03 L. Her PETCO$_2$ was 37.33 ± 0.03 L/min, resulting in an increase in f_R compared to baseline values. # indicates a significant difference between DMSO and ETO values. Data are expressed as mean ± SEM. * indicates a significant difference between oil and ETO exposures.

3.2. Effect of ETO on baseline respiratory frequency on in vivo newborn mice

After exposure to 10^{-3} mg/kg ETO, the baseline f_R was 196.8 ± 12.1 cycles/min (Fig. 2B; n = 11). This f_R was significantly increased compared to control mice (oil exposure; 146.8 ± 7.2 cycles/min, p < 0.001; Fig. 2A,C; n = 16).

3.3. Effect of ETO on ex vivo preparations

Baseline f_R was 8.5 ± 0.2 bursts/min with no significant differences between groups.

3.3.1. Effect of ETO on CVD

f_R was significantly increased after 25 min of exposure to 0.05, 0.5, 1 and 2 μM ETO (129.7 ± 5.7%, p < 0.001, n = 16; 129.7 ± 8.6%, p < 0.001, n = 14; 123.2 ± 3.2%, p < 0.001, n = 24 and 147.1 ± 5.8%, p < 0.001, n = 14, respectively; Fig. 3C–K). While in control, DMSO exposure, did not induce any significant changes (111.0 ± 3.7%, n = 18; Fig. 3A,B,K). f_R was significantly higher at all ETO concentrations than with DMSO (0.5 and 1 μM p < 0.01; 0.05 and 2 μM, p < 0.001; Fig. 3K). In addition, the increase in f_R induced by 2 μM ETO was significantly greater than that observed with lower concentrations (p < 0.01, Fig. 3K). After removing the ETO by returning to normo-pH-aCSF, f_R returned to baseline values for 0.05 and 0.05 mg/kg ETO.

Fig. 2. ETO increases baseline f_R in vivo on newborn mice. (A–B) Traces illustrate baseline f_R of newborn mice after 2 h of oil (A) or ETO (B) exposure. (C) Histogram showing mean value of f_R of oil (white bar) or ETO (gray bar) exposure. Data are expressed as mean ± SEM. * indicates a significant difference between oil and ETO values. Student t-test; *** p < 0.001.

Fig. 3. ETO increases baseline f_R on ex vivo medullary-spinal cord preparations. (A–J) Traces illustrate ventilatory C4 activity recorded the last 5 min before (A, C, E, G and I) and during the DMSO (B) or ETO exposure (D, F, H and J). (K) Histogram showing mean value of f_R during DMSO (white bar) or ETO (gray bars) exposure. Data are expressed as mean ± SEM. * indicates a significant increase in mean f_R compared to baseline values. # indicates a significant difference between DMSO and ETO values. \equiv indicates a significant difference between ET0 2 μM and lower ETO concentrations. ANOVA 2 way – Bonferroni post test. Integrated activity of C4 ventral nerve root (∫ (C4); electrical activity of C4 ventral nerve root (C4). ***p < 0.001, ** p < 0.01, *p < 0.05, 0.05 0.5 1 2
0.5 μM ETO, but not for 1 and 2 μM ETO (153.1 ± 1.2% and 154.3 ± 14.3%, p < 0.05, respectively).

In contrast, the burst amplitude (IntC4) was not modified by ETO (100.9 ± 4.9%; 100.4 ± 1.5%; 98.1 ± 2.7%; 94.2 ± 3.3% for 0.05, 0.5, 1 and 2 μM ETO and 99.7 ± 2.2%, for DMSO; Fig. 3A–J).

3.3.2. Interaction of ETO with the GABA{	extsubscript{A}} receptor

After 10 min of exposure, bicuculline (GABA{	extsubscript{A}} receptor antagonist) induced a significant increase in f{	extsubscript{R}} (137.7 ± 8.0%, p < 0.001; Fig. 4A,C,E).

Under bicuculline, 0.05 μM ETO still induced a significant increase in f{	extsubscript{R}} (115.7 ± 2.8%, p < 0.05, n = 8; Fig. 4D,G). This effect was significantly different from that observed with DMSO (107.8 ± 3.3%, p < 0.05, n = 10; Fig. 4A,B), but significantly lower (50%) than the f{	extsubscript{R}} increase induced by ETO without bicuculline (p < 0.05; Fig. 4G).

After removing the ETO, f{	extsubscript{R}} returned to bicuculline values (97.0 ± 1.8%). In contrast, under bicuculline, 2 μM ETO failed to induce any increase in f{	extsubscript{R}} (107.6 ± 1.1%, p < 0.001, n = 9; Fig. 4E,F,G).

ETO was dose-dependently decreased by application of muscimol (GABA{	extsubscript{A}} receptor agonist; IC{	extsubscript{50}} = 0.14 μM, n = 28; Fig. 4H). The decrease in f{	extsubscript{R}} induced by muscimol (IC{	extsubscript{50}}) was greater with ETO (39.6 ± 7.1%, p < 0.001, n = 14 and 36.7 ± 7.0%, p < 0.001, n = 14 for 0.05 and 2 μM, respectively, Fig. 4K–O) than with DMSO (66.6 ± 11.0%, p < 0.01, n = 9; Fig. 4J,O). After return to normal-pH-aCSF, f{	extsubscript{R}} returned to pre-muscimol values (102.8 ± 2.6% for DMSO and 100.6 ± 3.8% and 112.0 ± 4.0% for 0.05 and 2 μM ETO, respectively).

Fig. 4. ETO regulates the efficiency of GABA{	extsubscript{A}} modulation of f{	extsubscript{R}}. (A–F) Ventilatory C4 activity under bicuculline exposure over the last 5 min preceding (A, C and E) and during (B, D and F) DMSO or ETO exposure. (G) Histogram showing mean value of f{	extsubscript{R}} during ETO exposure in the absence and in the presence of bicuculline. (H) Dose-response curve of changes in mean f{	extsubscript{R}} in response to exposure to muscimol. (I–N) Traces illustrate the ventilatory C4 activity under DMSO and ETO exposure over the last 5 min before (I, K and M) and during (J, L and N) muscimol application. (O) Histogram showing mean value of f{	extsubscript{R}} observed under muscimol and DMSO (white bar) or ETO (gray bars) application. Data are expressed as mean ± SEM. * indicates a significant change in mean f{	extsubscript{R}} compared to baseline or bicuculline or pre-muscimol values. # indicates a significant difference between ETO and ETO-BIC or DMSO exposures. ANOVA 2 way – Bonferroni post test. Integrated activity of the C4 ventral nerve root (∫C4); electrical activity of the C4 ventral nerve root (C4); *p < 0.05, **p < 0.01, ***p < 0.001; p < 0.05, **p < 0.01, ***p < 0.001; etonogestrel (ETO); bicuculline (BIC).
3.3.3. Interaction of ETO with the NMDA receptor

fe was dose-dependently increased by NMDA (EC50 = 9.28 μM, n = 20; Fig. 5A). The optimal concentration of dizocilpine (MK-801, a NMDA receptor antagonist) was 2.5 μM. At this concentration, fe was not significantly altered (103.3 ± 6.1%) and the EC50 of NMDA did not modify fe (113.5 ± 7.8%, n = 5). Under 2.5 μM MK-801, the increase in fe induced by 0.05 μM ETO was no longer observed (97.6 ± 9.1%, n = 4; Fig. 5B–D), this was significantly different from that observed without MK-801 (p < 0.01, Fig. 5D).

Exposure to the EC50 of NMDA together with DMSO or ETO (0.05 and 2 μM) significantly increased fe (130.4 ± 12.2%, p < 0.05, n = 10; 153.3 ± 8.8%, p < 0.001, n = 11; and 140.5 ± 10.2%, p < 0.01, n = 8, respectively; Fig. 5E–K). The increase in %R observed with 0.05 μM ETO was significantly greater (p < 0.05, Fig. 5K) than that observed with DMSO. After return to normal-pH-aCSF, %R returned to pre-NMDA values for 2 μM ETO (91.7 ± 8.8%), but not for DMSO or 0.05 μM ETO (80.2 ± 5.3%, p < 0.05; 60.8 ± 7.5%, p < 0.001; respectively).

3.3.4. Interaction of ETO with serotonergic systems

5-HT (25 μM) increased %R (146.8 ± 16.4%, p < 0.01, n = 5; Fig. 6A–C). After exposure to 5 μM methysergide (a 5-HT1/2/7 receptor antagonist), mean %R was not significantly modified by 5-HT (90.7 ± 22.8%, n = 3; Fig. 6D).

Under 5 μM methysergide, the increase in %R induced by both 0.05 and 2 μM ETO was no longer observed (97.3 ± 2.8%, n = 5, and 92.3 ± 3.2%, n = 5, respectively, p < 0.001; Fig. 6D).

3.3.5. Effect of ETO on the number of c-FOS-positive cells - identification of serotonergic and catecholaminergic features

0.05 μM ETO induced an increase in the number of c-FOS-positive cells in the commissural and median parts of the NTS (c/ mNTS; +221 ± 75%, n = 12; Table 1; Fig. 7A,E), but not in the ventrolateral part (vNTS; n = 12; Table 1; Fig. 7A,E). Only a very

Fig. 5. ETO regulates the efficiency of NMDA modulation of %R. (A) Dose–response curve of changes in mean %R in response to exposure to NMDA receptor agonist NMDA. (B–C) Traces illustrate ventilatory C4 activity under MK-801 exposure over the last 5 min before (B) and during (C) ETO exposure. (D) Histogram showing mean value of %R observed during ETO exposure in the absence and in the presence of MK-801. (E–J) Traces illustrate ventilatory C4 activity under DMSO and ETO exposure during the last 5 min before (E, G and I) and during (F, H and J) NMDA application. (K) Histogram showing mean value of %R observed under NMDA and DMSO (white bar) or ETO (gray bars) application. All values are expressed as mean ± SEM. * indicates a significant increase in mean %R compared to baseline or pre-NMDA values. # indicates a significant difference between ETO and DMSO or ETO and ETO-MK 801 exposure. ANOVA 2way — Bonferroni post test. Integrated activity of C4 ventral nerve root (%C4); electrical activity of C4 ventral nerve root (%C4); "**p < 0.01, "***p < 0.001, "##p < 0.01; etonogestrel (ETO).
small proportion of cells was also immunoreactive for TH (42.3 ± 35% and 49% for 2 μM ETO, respectively; Table 1; Fig. 7B,F,J) and a large proportion of c-FOS-positive cells in the rostral parts of RPa and ROb were also 5-HT-positive (9.1% at 0.05 μM and 6.8% for 2 μM ETO).

ETO exposure also induced a significant increase in c-fos expression in facial (+35 ± 8% and +59 ± 14% for 0.05 and 2 μM ETO, respectively; Table 1) and hypoglossal (+626 ± 185% and +400 ± 103% for 0.05 and 2 μM ETO, respectively; Table 1) nuclei.

On the ventral medullary surface, at the level of the RTN/pFRG and PP (cells located at the lateral edge of the pyramidal tract (Paxinos et al., 2007; Paxinos and Franklin, 2001)), c-fos expression was not modified by ETO exposure (Table 1).

4. Discussion

This study was conducted on the basis of clinical observations showing that exposure to a progestin of the gonane family increases f_{\text{R}} in CCHS patients and shows that such molecules can experimentally increase respiratory frequency in newborn mice in vivo and in isolated brainstem. Our data demonstrate medullary mechanisms, indicating that serotoninergic neurons within the medullary raphe nuclei are involved.

4.1. DSG accelerates f_{\text{R}} and reduces PETCO2 in CCHS patients

The first description of the ventilatory effects of DSG in CCHS patients (Straus et al., 2010) focused on chemosensitivity and recovery of a perceptual and ventilatory response to CO2, mostly because this finding constituted a major surprise. The first patient did not know at all that she was taking a potentially effective drug, but the second patient was aware of the observation made with the first patient and of the hypothesis concerning her own ventilatory response to hypercapnia. Since the observations were not part of a blinded study, but fortuitously observed in a clinical setting, the patients were aware of the drug withdrawal. The effects of DSG on baseline ventilation were not examined in detail. Review of the data collected dynamically (before, during and after

Table 1

<table>
<thead>
<tr>
<th></th>
<th>DMSO</th>
<th>ETO 0.05 μM</th>
<th>ETO 2 μM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 8</td>
<td>n = 12</td>
<td>n = 12</td>
</tr>
<tr>
<td>c/mNTS</td>
<td>37.6 ± 11.7</td>
<td>120.7 ± 28.0*</td>
<td>28.1 ± 6.8***</td>
</tr>
<tr>
<td>nNTS</td>
<td>6.7 ± 2.6</td>
<td>4.5 ± 0.8</td>
<td>3.8 ± 1.0</td>
</tr>
<tr>
<td>VLM</td>
<td>903 ± 21.1</td>
<td>2535 ± 49.5**</td>
<td>225.3 ± 44.0*</td>
</tr>
<tr>
<td>CrPa</td>
<td>35.6 ± 8.3</td>
<td>565 ± 6.3</td>
<td>68.5 ± 9.1*</td>
</tr>
<tr>
<td>rRPa</td>
<td>14.0 ± 1.8</td>
<td>29.8 ± 4.9*</td>
<td>24.3 ± 2.8</td>
</tr>
<tr>
<td>cROb</td>
<td>43.9 ± 16.6</td>
<td>135.1 ± 14.9*</td>
<td>194.7 ± 36.0***</td>
</tr>
<tr>
<td>rROb</td>
<td>3.8 ± 1.7</td>
<td>48.5 ± 9.0***</td>
<td>35.5 ± 7.6***</td>
</tr>
<tr>
<td>RMg</td>
<td>9.4 ± 1.7</td>
<td>118 ± 2.8</td>
<td>9.2 ± 2.3</td>
</tr>
<tr>
<td>XII</td>
<td>19.3 ± 3.3</td>
<td>140.2 ± 35.7**</td>
<td>96.6 ± 19.8**</td>
</tr>
<tr>
<td>7N</td>
<td>134.0 ± 7.6</td>
<td>181.1 ± 10.8*</td>
<td>213.5 ± 18.5**</td>
</tr>
<tr>
<td>RTN/pFRG</td>
<td>6.3 ± 0.9</td>
<td>7.3 ± 1.4</td>
<td>8.5 ± 1.3</td>
</tr>
<tr>
<td>PP</td>
<td>8.8 ± 2.8</td>
<td>10.5 ± 1.7</td>
<td>13.5 ± 2.5</td>
</tr>
</tbody>
</table>

Values are expressed as total number of c-FOS positive cells per structure ±SEM. * indicates a significant increase in total number of c-FOS positive cells per structure compared to DMSO values. # indicates a significant difference between 0.05 and 2 μM of ETO. Kruskal-Wallis – Dunn post test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Nucleus of the tractus solitarius, commissural and median parts (c/mNTS), ventrolateral part (nNTS); ventrolateral medullary reticular nucleus (VLM); pallidus raphe nucleus, caudal part (rCrPa) and rostral part (CrPa); obscurus raphe nucleus; caudal part (cROb) and rostral part (rROb); magnus raphe nucleus (RMg); hypoglossal nucleus (XII); facial nucleus (7N); retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG); parapyramidal area (PP).

DSG exposure) from the same two patients showed that fR was higher and PETCO2 was lower in the presence of DSG compared to the absence of DSG (Fig. 1). This evidence is undoubtedly fragile (only two patients, retrospective analysis, absence of control of DSG administration due the serendipitous nature of the observations). The present re-analysis suggests that the ventilatory effect of DSG could extend beyond chemosensitivity, as DSG may increase fR and lower PETCO2 during resting breathing in certain CCHS patients despite the defective respiratory rhythmogenesis characteristic of this disease. Because progesterone and pregnane progestins increase fR in healthy humans (Behan et al., 2003; Jensen et al., 2008; Skatrud et al., 1978), but not in CCHS patients (Sritippayawan et al., 2002), our observations suggest that DSG and more generally gonane progestins could interfere with breathing control via distinct mechanisms from those involved in the action of pregnanes.

4.2. ETO, the metabolite of DSG, increased the fR on in vivo newborn mice

In vivo, considering the bioavailability of the DSG, the administration of 10^{-3} mg/kg of ETO is the nearest concentration of the human exposure (Timmer et al., 1999). At this concentration, in newborn mice ETO induced an increase of baseline fR compared to control (Fig. 2). Although the developmental stage was different, this increase is similar to what we observed in adult CCHS patients (Fig. 1).

4.3. ETO, the metabolite of DSG, enhances fR via medullary mechanisms

On ex vivo preparations containing only the medullary regions of the brainstem, acute exposure to ETO induced a dose-
dependent increase in f_R (Fig. 3) with no change in IntC4. This finding resembles our observations in CCHS patients (increased f_R with no VT changes). The f_R increase in CCHS patients receiving DSG and in *in vivo* newborn mice receiving 10^{-3} mg/kg of ETO (Figs. 1 and 2) may therefore be mediated by medullary mechanisms.

c-FOS labeling revealed increased cellular activity in the VLM, with 30–40% of c-FOS-positive catecholaminergic cells (Fig. 8), suggesting that catecholaminergic cells are involved in the ETO effects. Numerous data have implicated the A1C1 catecholaminergic cell group in the control of breathing (Erickson and Millhorn, 1994; Johnson et al., 2005; Viemari, 2008). However, at least 60% of VLM c-FOS-positive cells are not catecholaminergic. Of note, the preBotC, one of the two medullary respiratory oscillators (Feldman et al., 2013; Smith et al., 1991), is located in the VLM and does not contain catecholaminergic cells (Wang et al., 2001). Therefore, part of the non-catecholaminergic c-FOS-positive cells could be neurons of the preBotC. Further experiments are needed to confirm this hypothesis. As we did not observe any change in the number of c-FOS-positive cells in the RTN/pFRG, the second medullary respiratory oscillator (Feldman et al., 2013; Onimaru and Homma, 2003), is unlikely to be involved in the progestin effect. Of note, this structure is missing in transgenic mice harboring the same *Phox2b* mutation as CCHS patients (Dubreuil et al., 2008) and is therefore also probably missing in CCHS patients. Nevertheless, their baseline ventilation increased with DSG, which is consistent with the absence of involvement of the RTN/pFRG in the effects of ETO.

4.4. ETO regulates the efficiency of GABA_A and NMDA-mediated modulation of f_R

Under conditions of bicuculline-induced GABA_A receptor blockade, ETO facilitation was diminished or abolished (Fig. 4). This result suggests that part of the ETO effect on f_R depends on an interaction with GABA_A receptors, which would be consistent with data of literature reporting that steroids, including progesterone and progesterins, interact with GABA_A (Beelli and Lambert, 2005; Park-Chung et al., 1999). Steroids are known to be either negative, positive or both allosteric modulators of GABA_A (Park-Chung et al., 1999; Ren and Greer, 2006). No data are available concerning the interaction of ETO with GABA_A. Our experiments show that the decrease in f_R induced by the GABA_A agonist muscimol was markedly enhanced by ETO exposure, suggesting that ETO exerts a positive modulation of GABA_A. Two elements support this hypothesis. First, testosterone, from which ETO is derived, is a positive modulator of GABA_A (Park-Chung et al., 1999). Second, steroids that are negative modulators of GABA_A are characterized by a negative charge at C-3 (Park-Chung et al., 1999). This is not the case of ETO that displays a keto-group at this site (Grandi et al., 2014). It is possible that part of the ventilatory effect of ETO depends on positive modulation of GABA_A receptors that contribute to CVD. The differential effects of bicuculline on the ventilatory action of ETO (total or partial blockade) may be due to an ETO concentration-dependent effect on several types of GABA_A receptors, as it has been shown that for some neurosteroids the GABA_A-evoked responses mediated by receptors containing α_{1βδ3} subunits are enhanced by relatively low steroid concentrations. In contrast, equivalent receptors that incorporate α_{2δ4δ5δ6} subunits require higher steroid concentrations (Beelli and Lambert, 2005). According to this hypothesis, differences in the effects of bicuculline on the ventilatory action of ETO may be due to a global efficiency of various types of GABA_A receptors, particularly α_{1βδ3} GABA_A or α_{2δ4} GABA_A that have been either located in medullary respiratory areas or shown to play a role in CVD (Liu and Wong-Riley, 2006; Loria et al., 2013).

Bicuculline-induced GABA_A receptor blockade did not completely abolish the facilitation induced by low ETO concentration (Fig. 4). We therefore hypothesized that other receptors were involved. We focused on NMDA receptors because they are both involved in CVD and are modulated by steroids (Funk et al., 1997; Greer et al., 1991; Korinek et al., 2011). Our experiments showed that NMDA blockade totally abolished the facilitatory influence of ETO on f_R (Fig. 5), suggesting that either ETO modulates NMDA regulation of f_R, or that all pathways by which ETO increased f_R require functional glutamate/NMDA neurotransmission, or both. Our results showing that ETO potentiated the NMDA-induced increase in f_R only at low progestin concentrations support the hypothesis of modulation of NMDA regulation of f_R by ETO. c-FOS labeling suggested that ETO modulation of f_R regulation by NMDA depends on the α_{mNNTS}, which was the only area displaying an increase in c-FOS-positive cells, at low but not at high ETO concentrations. This hypothesis is supported by data indicating that NMDA receptors are present on α_{mNNTS} neurons (Lin et al., 2008) and that the excitatory response of NTS neurons to application of NMDA is modulated by steroids (Xue and Hay, 2003); as the c-FOS-positive neurons of the α_{mNNTS} were not catecholaminergic, ETO is likely to influence another cell population.

4.5. ETO increases f_R via a pathway involving medullary serotonergic systems

Because blockade of serotoninergic regulation of f_R abolished the facilitatory effect of ETO, we hypothesized that this effect
involved serotoninergic signaling, which is in line with published data showing that serotoninergic neurons are involved in the facilitatory influence of progesterone (Behan et al., 2003; Farmer et al., 1996). The effect of steroids on the release of 5-HT depends on supramedullary regions, such as pons (Robichaud and Debonnel, 2004) or hypothalamus (Farmer et al., 1996). Our experiments suggest that ETO interfered with serotoninergic systems via a direct medullary action, revealing a new pathway of interaction between progesteronergic and serotoninergic systems. More specifically, our c-FOS data suggest that ETO exerted its facilitatory action by activating serotoninergic neurons located in the caudal parts of RPa and ROB, two areas known to be implicated in ventilatory control (Cao et al., 2006; Cerpa et al., 2015; Depuy et al., 2011). This progestin-serotonin interaction affecting modulation of CVD would be specific to the gonane family. This putative pathway forms a relevant basis for dedicated investigations designed to elaborate personalized approaches to treat CCHS patients with gonane progestins. Otherwise, serotoninergic and non serotoninergic neurons of the medullary raphe nuclei and particularly those of the RPa are involved in the processes of thermogenesis and heat conservation (McGlashon et al., 2015; Nakamura and Morrison, 2007). Thus, in vivo, it is quite conceivable that these neurons stimulated by ETO could increase the CVD not only by a direct action on the central respiratory pattern generators but also indirectly by inducing an hyperthermia.

5. Conclusion

To conclude, DSG has been associated with chemosensitivity recovery in CCHS patients (Straus et al., 2010). Its metabolite, ETO, has been shown to enhance chemosensitivity in newborn rats via supramedullary mechanisms (Loiseau et al., 2014). Combined with the present data, these observations suggest that two distinct pathways are involved in the ventilatory effects of these gonane progestins. The medullary pathway described here could be relevant to resting breathing CVD, whereas the supramedullary pathway previously described could be relevant to chemosensitivity. Medullary and supramedullary mechanisms could coexist in CCHS. Their effect on resting breathing are particularly pertinent to the issue of ventilatory support. The present animal data, indicating a medullary serotoninergic determinant of the stimulant effect of ETO, provide a rationale for clinical trials combining DSG and serotoninergic drugs to improve ventilation in CCHS patients.

Conflict of interest

The authors declare no competing financial interests.

Acknowledgments

F Joubert was supported by the “Fonds de dotation pour la Recherche en Santé Respiratoire 2012”. E Verkaeren was supported by the “Fonds de dotation pour la Recherche en Santé Respiratoire 2014”. The present work was supported by a grant from the “Association Française pour le Syndrome d’Ondine”, by a “Legs Poix” grant from the “Chancellerie de l’Université de Paris”, by a grant from the French National Agency for Research (ProgestVentil: ANR-15-CE17) and by the French government - Institut Hospitalo-Universitaire - A - Institut du cerveau et de la Moelle épinière.
References

Pang, Y., Dong, J., Thomas, P. 2013. Characterization, neurosteroid binding and brain distribution of human membrane progesterone receptors delta and epsilon (mPRdelta and mPRepsilon) and mPRdelta involvement in neurosteroid inhibition of apoptosis. Endocrinology 154, 283–295.

